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Lower bounds for blow up time of the
p-Laplacian equation with damping term

Yavuz Ding, ERHAN PiskiN, CEMIL TUNC

ABSTRACT. In this work deals with the p-Laplacian wave equation with
damping terms in a bounded domain. Under suitable conditions, we
obtain a lower bounds for the blow up time. Our result extends the
recent results obtained by Baghaei (2017) and Zhou (2015), for p > 2.

1. INTRODUCTION

In this work, we study the following p-Laplacian equation with strong and
weak damping terms

(1)
uy — div (|Vu|p*2 Vu) —alAuy +buy = [u|T%u, z€Q, t>0,
U(.Z‘,O):’U,O(J?), Ut(l',O):Ul(lE), x €,

u(z,t) =0, z e, t>0,
where Q C R" (n = 2,3,...) is a bounded domain with a smooth boundary
0 and ug (z) € WP (), ui(z) € L2(Q), p > 2. a >0, b > —ap
with p; > 0 is the first eigenvalue of the operator—A under homogeneous
Dirichlet boundary conditions and

2<qg<oo ifn=2,

(2) 20 fora>0 |
< v > 3.
2<q_ 2:__227 fOI‘a:O 1fn_3

When p = 2, (1) is reduced to the following wave equation
(3) Uy — Au — alAuy + buy = ]u\q_Q u.

In 2006, Gazzalo and Squassina [2]| studied problem (3). They proved the
local existence, global existence and blow up of solutions. Later, some au-
thors studied the lower bounds for the blow up time under some conditions,
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see [1,7,9]. Also, in recent years, some authors investigate the lower bounds
for blow up time for hyperbolic type equations, see [3,4,6,8§].

Inspired by the above papers, in this paper we consider the lower bound
for the blow up time of solutions (1). Our result improves the recent results
obtained by Baghaei [1] and Zhou [9], for p > 2.

Now, for the problem (1), we define the functionals, the potential well
depth d and the unstable set U, are given as

Tw) = |Vul— [l
T = IVl .
B() = Bwuw)=J 0+ ful?,
(4) d = inf  maxJ (\u),
ueHg()/{0} x>0
U = {uGWOI’p:J(u)SdandI(u)<0}

with above assumptions, the results on the existence of local solutions and
the nonexistence of the solutions of the problem (1) can be reformulated as
follows:

(i) Assume that ¢ satisfy (2), then there exist 7' > 0 and a unique
solution u problem (1) satisfying

u € CQQﬂmem»mcme%Hammc%mT%HAam,
u € L*((0,T),Hy (Q)).

(ii) The solution u of problem (1) blows up at a finite time 7" if and only
if there exists ¢ € [0, T') such that u (f) € U and E (u (£) ,u¢ (£)) < d.

| S T
E@) = g llul”+ ];IIVUIIP—5IIUIIQ,

1, 5 1 1
(5) E0) = Fllul”+ EHVUO%_a”uOHg-

Lemma 1 ([5]). Let Q@ C R™ (n >2). Let u be a non-negative piecewise C'!
function defined in Q with u(x) =0, x € Q. So

(6) /Q|u\25ds <9 </Q |Vu\2da;>s

satisfies for

s>1, if n=2,
1<s< if n>3,

n
n—2"
1— ("72)5.

with 5 = (251) " jo=

3
n2




Y. Ding, E. Piskin, C. Tung 31

Theorem 1. Assume that q > # holds. Let u(x,t) be the solution of the
problem (1), which blows up at a finite time T*. Then

& dr .

<T

2(q=1) 2(a=1) o 2(¢=1) 2(¢=1) p—2¢+2 2(¢=1) o 2(¢=1) — ’
%(0) qM—|—T+5qp » 2 v M » +ep P q P 2 p T P

where

$(0) = fuoll,
2(g—1 _ (n—2)(g—1)

(7) e= (1) Tl

2

n
2
M = flual® + 5 IVuolly — ¢ luollg -

Proof. Multiplying the equation of (1) by u;, then integrating the result over
), we have

/ Uy [utt —div (|Vu\p72 Vu) — alAug + but] dz = / Uy |u|q*2 udx,
Q Q

2dt/ |ug|? da:+/ ]Vu|pda:+a/ |V |? dx—i—b/ |ug|* d
_ q
= th/ lu|?d .

Since

d
dt
the above calculations imply E’ (t) < 0, with

1 2 1 p 1 q 2 2
(5 Il + S U7l = 2l ) = = [Vl = b

1, 5 1 1
Et):= 5 llul”+ , IVull, — p [[ullg -

So,
(s) E(t) < E(0) = M,
where M is defined in (7) and
(9) Jual? + 2 IVally = 2B () + = g < 23+ .
Now define
o () = [lul?,

then thanks to Cauchy’s and embedding (LP(2) < L% (), p > 2) inequali-
ties and Lemma 1 with s = ¢ — 1 and § = ¢, we obtain

P(t) = q/|u|q_2uutdx

2 1)
2 (el + Jal3e—))

1
3 (el + £ [7uf57V)

IN

IN
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q 2 2(g—1)
< I
< 2 (el + < Ivulp)

q 5 2(¢=1)
2<uutu e (Ivulp) )

By the (9) and definition of ¥, we get

I 2(g-1) ezl
/ < 4q M g p ’ M 2
Pt) < 2M + = (t) +¢ 2M + =1 (t)
2 q 2 q
- ) -
q 2(g-1) M) 2(g-1)
< = e U Y 2(g-1) 2l
<ol " 2 1<<2M> (o) 7 )
i 5 Hg1) 5 2(g-1)
q p 2(q—1) P
= Z2M+ 29 (t) +e oM) " » +<¢ t)
! “v ) +elg— | ) a0
_ A 2(g=1)  2(g—1) 22(q_1) 2(g-1)
p q— q— p q—
= qM +1(t) +eq 1 P P RCTeE) (t)
q P
2(g=1) 2(¢=1) o  2(a—1)
= qM+y@t)+eqp v 27 M v

2(g—1) p—2q+2

+ep P q P

2(g=1) o 2(g=1)
p p

(t) Y

where used (a + b)® < 297! (a® + b¥). Thus, the above inequality implies

that
dy(t 2(¢=1) 2(a=1) _5  2(g=1)
di) < qM+y(t)+eqp v 270 M v
2(g—1) p—2q+2 2(¢—1) 2(g—1)
(10) tep v g v 2 7 Y ().
Since lim;_,7+ ¢ (t) = oo, we get from (10)

o dr .
/ 21 26-D _o 2(—1 2(—1) p-2¢+2 20-1 _, 2(a—1) =T
YO) gM +7+eqp » 2 » » +ep p q » P TP
This completes the proof of the main theorem. O

2.

CONCLUSION

In this work, we obtained the lower bounds for blow up time of the non-
linear p-Laplacian equation with damping terms in a bounded domain. This
improves and extends many results in the literature.
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