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Lower bounds for blow up time of the
p-Laplacian equation with damping term

Yavuz Dı̇nç, Erhan Pı̇şkı̇n, Cemı̇l Tunç

Abstract. In this work deals with the p-Laplacian wave equation with
damping terms in a bounded domain. Under suitable conditions, we
obtain a lower bounds for the blow up time. Our result extends the
recent results obtained by Baghaei (2017) and Zhou (2015), for p > 2.

1. Introduction

In this work, we study the following p-Laplacian equation with strong and
weak damping terms
(1)

utt − div
(
|∇u|p−2∇u

)
− a∆ut + but = |u|q−2 u, x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, x ∈ ∂Ω, t > 0,

where Ω ⊂ Rn (n = 2, 3, . . . ) is a bounded domain with a smooth boundary
∂Ω; and u0 (x) ∈ W 1,p

0 (Ω) , u1 (x) ∈ L2 (Ω), p > 2. a ≥ 0, b > −aρ1

with ρ1 > 0 is the first eigenvalue of the operator−∆ under homogeneous
Dirichlet boundary conditions and

(2)


2 < q <∞ if n = 2,

2 < q ≤
{ 2n

n−2 , for a > 0
2n−2
n−2 , for a = 0

if n ≥ 3.

When p = 2, (1) is reduced to the following wave equation

(3) utt −∆u− a∆ut + but = |u|q−2 u.

In 2006, Gazzalo and Squassina [2] studied problem (3). They proved the
local existence, global existence and blow up of solutions. Later, some au-
thors studied the lower bounds for the blow up time under some conditions,
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see [1,7,9]. Also, in recent years, some authors investigate the lower bounds
for blow up time for hyperbolic type equations, see [3, 4, 6, 8].

Inspired by the above papers, in this paper we consider the lower bound
for the blow up time of solutions (1). Our result improves the recent results
obtained by Baghaei [1] and Zhou [9], for p > 2.

Now, for the problem (1), we define the functionals, the potential well
depth d and the unstable set U , are given as

I (u) = ‖∇u‖pp − ‖u‖
q
q ,

J (u) =
1

p
‖∇u‖pp −

1

q
‖u‖qq ,

E (t) := E (u, ut) = J (u) +
1

2
‖ut‖2 ,

d = inf
u∈H1

0 (Ω)/{0}
max J (λu)

λ≥0

,(4)

U =
{
u ∈W 1,p

0 : J (u) ≤ d and I (u) < 0
}

with above assumptions, the results on the existence of local solutions and
the nonexistence of the solutions of the problem (1) can be reformulated as
follows:

(i) Assume that q satisfy (2), then there exist T > 0 and a unique
solution u problem (1) satisfying

u ∈ C
(

[0, T ) ,W 1,p
0 (Ω)

)
∩ C1

(
[0, T ) , L2 (Ω)

)
∩ C2

(
[0, T ) , H−1 (Ω)

)
,

ut ∈ L2
(
(0, T ) , H1

0 (Ω)
)
.

(ii) The solution u of problem (1) blows up at a finite time T if and only
if there exists t ∈ [0, T ) such that u

(
t
)
∈ U and E

(
u
(
t
)
, ut
(
t
))
≤ d.

E (t) =
1

2
‖ut‖2 +

1

p
‖∇u‖pp −

1

q
‖u‖qq ,

E (0) =
1

2
‖u1‖2 +

1

p
‖∇u0‖pp −

1

q
‖u0‖qq .(5)

Lemma 1 ([5]). Let Ω ⊂ Rn (n ≥ 2). Let u be a non-negative piecewise C1

function defined in Ω with u (x) = 0, x ∈ ∂Ω. So

(6)
∫

Ω
|u|2s d s ≤ δ

(∫
Ω
|∇u|2 dx

)s
satisfies for {

s > 1, if n = 2,
1 < s < n

n−2 , if n ≥ 3,

with δ =
(
n−1

n
3
2

)2s
|Ω|1−

(n−2)
n

s.
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Theorem 1. Assume that q > p+2
2 holds. Let u (x, t) be the solution of the

problem (1), which blows up at a finite time T ∗. Then∫ ∞
ψ(0)

d τ

qM + τ + εqp
2(q−1)

p 2
2(q−1)

p
−2
M

2(q−1)
p + εp

2(q−1)
p q

p−2q+2
p 2

2(q−1)
p
−2
τ

2(q−1)
p

≤ T ∗,

where

(7)


ψ (0) = ‖u0‖qq ,

ε =
(
n−1

n
3
2

)2(q−1)
|Ω|1−

(n−2)(q−1)
n ,

M = 1
2 ‖u1‖2 + 1

p ‖∇u0‖pp −
1
q ‖u0‖qq .

Proof. Multiplying the equation of (1) by ut, then integrating the result over
Ω, we have∫

Ω
ut

[
utt − div

(
|∇u|p−2∇u

)
− a∆ut + but

]
dx =

∫
Ω
ut |u|q−2 udx,

1

2

d

d t

∫
Ω
|ut|2 dx+

1

p

d

d t

∫
Ω
|∇u|p dx+ a

∫
Ω
|∇ut|2 dx+ b

∫
Ω
|ut|2 dx

=
1

q

d

d t

∫
Ω
|u|q dx.

Since
d

d t

(
1

2
‖ut‖2 +

1

p
‖∇u‖pp −

1

q
‖u‖qq

)
= −a ‖∇ut‖2 − b ‖ut‖2 ,

the above calculations imply E′ (t) ≤ 0, with

E (t) :=
1

2
‖ut‖2 +

1

p
‖∇u‖pp −

1

q
‖u‖qq .

So,

(8) E (t) ≤ E (0) = M,

where M is defined in (7) and

(9) ‖ut‖2 +
2

p
‖∇u‖pp = 2E (t) +

2

q
‖u‖qq ≤ 2M +

2

q
‖u‖qq .

Now define
ψ (t) = ‖u‖qq ,

then thanks to Cauchy’s and embedding (Lp(Ω) ↪→ L2 (Ω), p > 2) inequali-
ties and Lemma 1 with s = q − 1 and δ = ε, we obtain

ψ′(t) = q

∫
Ω
|u|q−2 uut dx

≤ q

2

(
‖ut‖2 + ‖u‖2(q−1)

2(q−1)

)
≤ q

2

(
‖ut‖2 + ε ‖∇u‖2(q−1)

2

)
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≤ q

2

(
‖ut‖2 + ε ‖∇u‖2(q−1)

p

)
=

q

2

(
‖ut‖2 + ε

(
‖∇u‖pp

) 2(q−1)
p

)
.

By the (9) and definition of ψ, we get

ψ′ (t) ≤ q

2

2M +
2

q
ψ (t) + ε

(p
2

) 2(q−1)
p
(

2M +
2

q
ψ (t)

) 2(q−1)
p


≤ q

2

 2M + 2
qψ (t)

+ε
(p

2

) 2(q−1)
p

2
2(q−1)

p
−1

(
(2M)

2(q−1)
p +

(
2
qψ (t)

) 2(q−1)
p

) 
=

q

2

2M +
2

q
ψ (t) + ε

p
2(q−1)

p

2

(2M)
2(q−1)

p +

(
2

q
ψ (t)

) 2(q−1)
p


= qM + ψ (t) + εq

p
2(q−1)

p

4

2
2(q−1)

p M
2(q−1)

p +
2

2(q−1)
p

q
2(q−1)

p

ψ
2(q−1)

p (t)


= qM + ψ (t) + εqp

2(q−1)
p 2

2(q−1)
p
−2
M

2(q−1)
p

+εp
2(q−1)

p q
p−2q+2

p 2
2(q−1)

p
−2
ψ

2(q−1)
p (t) ,

where used (a+ b)$ ≤ 2$−1 (a$ + b$). Thus, the above inequality implies
that

dψ(t)

d t
≤ qM + ψ (t) + εqp

2(q−1)
p 2

2(q−1)
p
−2
M

2(q−1)
p

+εp
2(q−1)

p q
p−2q+2

p 2
2(q−1)

p
−2
ψ

2(q−1)
p (t) .(10)

Since limt→T ∗ ψ (t) =∞, we get from (10)∫ ∞
ψ(0)

d τ

qM + τ + εqp
2(q−1)

p 2
2(q−1)

p
−2
M

2(q−1)
p + εp

2(q−1)
p q

p−2q+2
p 2

2(q−1)
p
−2
τ

2(q−1)
p

≤ T ∗.

This completes the proof of the main theorem. �

2. Conclusion

In this work, we obtained the lower bounds for blow up time of the non-
linear p-Laplacian equation with damping terms in a bounded domain. This
improves and extends many results in the literature.
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